kineticTheoryModel.C
Go to the documentation of this file.
1 /*---------------------------------------------------------------------------*\
2  ========= |
3  \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4  \\ / O peration |
5  \\ / A nd | www.openfoam.com
6  \\/ M anipulation |
7 -------------------------------------------------------------------------------
8  Copyright (C) 2011-2018 OpenFOAM Foundation
9  Copyright (C) 2019-2023 OpenCFD Ltd.
10 -------------------------------------------------------------------------------
11 License
12  This file is part of OpenFOAM.
13 
14  OpenFOAM is free software: you can redistribute it and/or modify it
15  under the terms of the GNU General Public License as published by
16  the Free Software Foundation, either version 3 of the License, or
17  (at your option) any later version.
18 
19  OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
20  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
21  FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
22  for more details.
23 
24  You should have received a copy of the GNU General Public License
25  along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
26 
27 \*---------------------------------------------------------------------------*/
28 
29 #include "kineticTheoryModel.H"
30 #include "mathematicalConstants.H"
31 #include "twoPhaseSystem.H"
32 #include "fvOptions.H"
33 
34 // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
35 
36 Foam::RASModels::kineticTheoryModel::kineticTheoryModel
37 (
38  const volScalarField& alpha,
39  const volScalarField& rho,
40  const volVectorField& U,
41  const surfaceScalarField& alphaRhoPhi,
42  const surfaceScalarField& phi,
43  const transportModel& phase,
44  const word& propertiesName,
45  const word& type
46 )
47 :
48  eddyViscosity
49  <
51  >
52  (
53  type,
54  alpha,
55  rho,
56  U,
57  alphaRhoPhi,
58  phi,
59  phase,
60  propertiesName
61  ),
62 
63  phase_(phase),
64 
65  viscosityModel_
66  (
67  kineticTheoryModels::viscosityModel::New
68  (
69  coeffDict_
70  )
71  ),
72  conductivityModel_
73  (
74  kineticTheoryModels::conductivityModel::New
75  (
76  coeffDict_
77  )
78  ),
79  radialModel_
80  (
81  kineticTheoryModels::radialModel::New
82  (
83  coeffDict_
84  )
85  ),
86  granularPressureModel_
87  (
88  kineticTheoryModels::granularPressureModel::New
89  (
90  coeffDict_
91  )
92  ),
93  frictionalStressModel_
94  (
95  kineticTheoryModels::frictionalStressModel::New
96  (
97  coeffDict_
98  )
99  ),
100 
101  equilibrium_(coeffDict_.get<bool>("equilibrium")),
102  e_("e", dimless, coeffDict_),
103  alphaMax_("alphaMax", dimless, coeffDict_),
104  alphaMinFriction_("alphaMinFriction", dimless, coeffDict_),
105  residualAlpha_("residualAlpha", dimless, coeffDict_),
106  maxNut_("maxNut", dimViscosity, 1000, coeffDict_),
107 
108  Theta_
109  (
110  IOobject
111  (
112  IOobject::groupName("Theta", phase.name()),
113  U.time().timeName(),
114  U.mesh(),
115  IOobject::MUST_READ,
116  IOobject::AUTO_WRITE,
117  IOobject::REGISTER
118  ),
119  U.mesh()
120  ),
121 
122  lambda_
123  (
124  IOobject
125  (
126  IOobject::groupName("lambda", phase.name()),
127  U.time().timeName(),
128  U.mesh(),
129  IOobject::NO_READ,
130  IOobject::NO_WRITE
131  ),
132  U.mesh(),
134  ),
135 
136  gs0_
137  (
138  IOobject
139  (
140  IOobject::groupName("gs0", phase.name()),
141  U.time().timeName(),
142  U.mesh(),
143  IOobject::NO_READ,
144  IOobject::NO_WRITE
145  ),
146  U.mesh(),
148  ),
149 
150  kappa_
151  (
152  IOobject
153  (
154  IOobject::groupName("kappa", phase.name()),
155  U.time().timeName(),
156  U.mesh(),
157  IOobject::NO_READ,
158  IOobject::NO_WRITE
159  ),
160  U.mesh(),
162  ),
163 
164  nuFric_
165  (
166  IOobject
167  (
168  IOobject::groupName("nuFric", phase.name()),
169  U.time().timeName(),
170  U.mesh(),
171  IOobject::NO_READ,
172  IOobject::AUTO_WRITE,
173  IOobject::REGISTER
174  ),
175  U.mesh(),
177  )
178 {
179  if (type == typeName)
180  {
182  }
183 }
184 
185 
186 // * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
189 {}
190 
191 
192 // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
193 
195 {
196  if
197  (
199  <
201  >::read()
202  )
203  {
204  coeffDict().readEntry("equilibrium", equilibrium_);
205  e_.readIfPresent(coeffDict());
206  alphaMax_.readIfPresent(coeffDict());
207  alphaMinFriction_.readIfPresent(coeffDict());
208 
209  viscosityModel_->read();
210  conductivityModel_->read();
211  radialModel_->read();
212  granularPressureModel_->read();
213  frictionalStressModel_->read();
214 
215  return true;
216  }
217 
218  return false;
219 }
220 
221 
224 {
226  return nut_;
227 }
228 
229 
232 {
234  return nut_;
235 }
236 
237 
240 {
242  return nullptr;
243 }
244 
245 
248 {
250  (
251  IOobject::groupName("R", U_.group()),
253  (
254  - (nut_)*devTwoSymm(fvc::grad(U_))
255  - (lambda_*fvc::div(phi_))*symmTensor::I
256  )
257  );
258 }
259 
260 
263 {
264  const tmp<volScalarField> trho(phase_.rho());
265  const volScalarField& rho = trho();
266 
267  tmp<volScalarField> tpPrime
268  (
269  Theta_
270  *granularPressureModel_->granularPressureCoeffPrime
271  (
272  alpha_,
273  radialModel_->g0(alpha_, alphaMinFriction_, alphaMax_),
274  radialModel_->g0prime(alpha_, alphaMinFriction_, alphaMax_),
275  rho,
276  e_
277  )
278  + frictionalStressModel_->frictionalPressurePrime
279  (
280  phase_,
281  alphaMinFriction_,
282  alphaMax_
283  )
284  );
285 
286  volScalarField::Boundary& bpPrime =
287  tpPrime.ref().boundaryFieldRef();
288 
289  forAll(bpPrime, patchi)
290  {
291  if (!bpPrime[patchi].coupled())
292  {
293  bpPrime[patchi] == 0;
294  }
295  }
296 
297  return tpPrime;
298 }
299 
300 
303 {
304  return fvc::interpolate(pPrime());
305 }
306 
307 
310 {
311  return devRhoReff(U_);
312 }
313 
314 
317 (
318  const volVectorField& U
319 ) const
320 {
322  (
323  IOobject::groupName("devRhoReff", U.group()),
325  (
326  - (rho_*nut_)
328  - ((rho_*lambda_)*fvc::div(phi_))*symmTensor::I
329  )
330  );
331 }
332 
333 
336 (
338 ) const
339 {
340  return
341  (
342  - fvm::laplacian(rho_*nut_, U)
343  - fvc::div
344  (
345  (rho_*nut_)*dev2(T(fvc::grad(U)))
346  + ((rho_*lambda_)*fvc::div(phi_))
348  )
349  );
350 }
351 
352 
354 {
355  // Local references
356  volScalarField alpha(max(alpha_, scalar(0)));
357  const tmp<volScalarField> trho(phase_.rho());
358  const volScalarField& rho = trho();
359  const surfaceScalarField& alphaRhoPhi = alphaRhoPhi_;
360  const volVectorField& U = U_;
361  const tmp<volVectorField> tUc =
362  refCast<const twoPhaseSystem>(phase_.fluid()).otherPhase(phase_).U();
363  const volVectorField& Uc = tUc();
364 
365  const scalar sqrtPi = sqrt(constant::mathematical::pi);
366  dimensionedScalar ThetaSmall("ThetaSmall", Theta_.dimensions(), 1e-6);
367  dimensionedScalar ThetaSmallSqrt(sqrt(ThetaSmall));
368 
369  tmp<volScalarField> tda(phase_.d());
370  const volScalarField& da = tda();
371 
372  tmp<volTensorField> tgradU(fvc::grad(U_));
373  const volTensorField& gradU(tgradU());
374  volSymmTensorField D(symm(gradU));
375 
376  // Calculating the radial distribution function
377  gs0_ = radialModel_->g0(alpha, alphaMinFriction_, alphaMax_);
378 
379  if (!equilibrium_)
380  {
381  // Particle viscosity (Table 3.2, p.47)
382  nut_ = viscosityModel_->nu(alpha, Theta_, gs0_, rho, da, e_);
383 
384  volScalarField ThetaSqrt("sqrtTheta", sqrt(Theta_));
385 
386  // Bulk viscosity p. 45 (Lun et al. 1984).
387  lambda_ = (4.0/3.0)*sqr(alpha)*da*gs0_*(1 + e_)*ThetaSqrt/sqrtPi;
388 
389  // Stress tensor, Definitions, Table 3.1, p. 43
391  (
392  rho*(2*nut_*D + (lambda_ - (2.0/3.0)*nut_)*tr(D)*I)
393  );
394 
395  // Dissipation (Eq. 3.24, p.50)
396  volScalarField gammaCoeff
397  (
398  "gammaCoeff",
399  12*(1 - sqr(e_))
400  *max(sqr(alpha), residualAlpha_)
401  *rho*gs0_*(1.0/da)*ThetaSqrt/sqrtPi
402  );
403 
404  // Drag
406  (
407  refCast<const twoPhaseSystem>(phase_.fluid()).Kd()
408  );
409 
410  // Eq. 3.25, p. 50 Js = J1 - J2
411  volScalarField J1("J1", 3*beta);
412  volScalarField J2
413  (
414  "J2",
415  0.25*sqr(beta)*da*magSqr(U - Uc)
416  /(
417  max(alpha, residualAlpha_)*rho
418  *sqrtPi*(ThetaSqrt + ThetaSmallSqrt)
419  )
420  );
421 
422  // particle pressure - coefficient in front of Theta (Eq. 3.22, p. 45)
423  volScalarField PsCoeff
424  (
425  granularPressureModel_->granularPressureCoeff
426  (
427  alpha,
428  gs0_,
429  rho,
430  e_
431  )
432  );
433 
434  // 'thermal' conductivity (Table 3.3, p. 49)
435  kappa_ = conductivityModel_->kappa(alpha, Theta_, gs0_, rho, da, e_);
436 
438 
439  // Construct the granular temperature equation (Eq. 3.20, p. 44)
440  // NB. note that there are two typos in Eq. 3.20:
441  // Ps should be without grad
442  // the laplacian has the wrong sign
443  fvScalarMatrix ThetaEqn
444  (
445  1.5*
446  (
447  fvm::ddt(alpha, rho, Theta_)
448  + fvm::div(alphaRhoPhi, Theta_)
449  - fvc::Sp(fvc::ddt(alpha, rho) + fvc::div(alphaRhoPhi), Theta_)
450  )
451  - fvm::laplacian(kappa_, Theta_, "laplacian(kappa,Theta)")
452  ==
453  - fvm::SuSp((PsCoeff*I) && gradU, Theta_)
454  + (tau && gradU)
455  + fvm::Sp(-gammaCoeff, Theta_)
456  + fvm::Sp(-J1, Theta_)
457  + fvm::Sp(J2/(Theta_ + ThetaSmall), Theta_)
458  + fvOptions(alpha, rho, Theta_)
459  );
460 
461  ThetaEqn.relax();
462  fvOptions.constrain(ThetaEqn);
463  ThetaEqn.solve();
464  fvOptions.correct(Theta_);
465  }
466  else
467  {
468  // Equilibrium => dissipation == production
469  // Eq. 4.14, p.82
470  volScalarField K1("K1", 2*(1 + e_)*rho*gs0_);
472  (
473  "K3",
474  0.5*da*rho*
475  (
476  (sqrtPi/(3*(3.0 - e_)))
477  *(1 + 0.4*(1 + e_)*(3*e_ - 1)*alpha*gs0_)
478  +1.6*alpha*gs0_*(1 + e_)/sqrtPi
479  )
480  );
481 
483  (
484  "K2",
485  4*da*rho*(1 + e_)*alpha*gs0_/(3*sqrtPi) - 2*K3/3.0
486  );
487 
488  volScalarField K4("K4", 12*(1 - sqr(e_))*rho*gs0_/(da*sqrtPi));
489 
490  volScalarField trD
491  (
492  "trD",
493  alpha/(alpha + residualAlpha_)
494  *fvc::div(phi_)
495  );
496  volScalarField tr2D("tr2D", sqr(trD));
497  volScalarField trD2("trD2", tr(D & D));
498 
499  volScalarField t1("t1", K1*alpha + rho);
500  volScalarField l1("l1", -t1*trD);
501  volScalarField l2("l2", sqr(t1)*tr2D);
502  volScalarField l3
503  (
504  "l3",
505  4.0
506  *K4
507  *alpha
508  *(2*K3*trD2 + K2*tr2D)
509  );
510 
511  Theta_ = sqr
512  (
513  (l1 + sqrt(l2 + l3))
514  /(2*max(alpha, residualAlpha_)*K4)
515  );
516 
517  kappa_ = conductivityModel_->kappa(alpha, Theta_, gs0_, rho, da, e_);
518  }
519 
520  Theta_.clamp_range(0, 100);
521 
522  {
523  // particle viscosity (Table 3.2, p.47)
524  nut_ = viscosityModel_->nu(alpha, Theta_, gs0_, rho, da, e_);
525 
526  volScalarField ThetaSqrt("sqrtTheta", sqrt(Theta_));
527 
528  // Bulk viscosity p. 45 (Lun et al. 1984).
529  lambda_ = (4.0/3.0)*sqr(alpha)*da*gs0_*(1 + e_)*ThetaSqrt/sqrtPi;
530 
531  // Frictional pressure
532  volScalarField pf
533  (
534  frictionalStressModel_->frictionalPressure
535  (
536  phase_,
537  alphaMinFriction_,
538  alphaMax_
539  )
540  );
541 
542  nuFric_ = frictionalStressModel_->nu
543  (
544  phase_,
545  alphaMinFriction_,
546  alphaMax_,
547  pf/rho,
548  D
549  );
550 
551  // Limit viscosity and add frictional viscosity
552  nut_.clamp_max(maxNut_);
553 
554  nuFric_ = min(nuFric_, maxNut_ - nut_);
555  nut_ += nuFric_;
556  }
557 
558  if (debug)
559  {
560  Info<< typeName << ':' << nl
561  << " max(Theta) = " << max(Theta_).value() << nl
562  << " max(nut) = " << max(nut_).value() << endl;
563  }
564 }
565 
566 
567 // ************************************************************************* //
List< ReturnType > get(const UPtrList< T > &list, const AccessOp &aop)
List of values generated by applying the access operation to each list item.
tmp< GeometricField< typename outerProduct< vector, Type >::type, fvPatchField, volMesh >> grad(const GeometricField< Type, fvsPatchField, surfaceMesh > &ssf)
Definition: fvcGrad.C:47
type
Types of root.
Definition: Roots.H:52
ThermalDiffusivity< PhaseCompressibleTurbulenceModel< phaseModel > > phaseCompressibleTurbulenceModel
Typedef for phaseCompressibleTurbulenceModel.
#define K1
Definition: SHA1.C:143
#define K4
Definition: SHA1.C:146
#define K2
Definition: SHA1.C:144
label max(const labelHashSet &set, label maxValue=labelMin)
Find the max value in labelHashSet, optionally limited by second argument.
Definition: hashSets.C:40
dimensionedSymmTensor sqr(const dimensionedVector &dv)
tmp< GeometricField< Type, fvPatchField, volMesh > > div(const GeometricField< Type, fvsPatchField, surfaceMesh > &ssf)
Definition: fvcDiv.C:42
constexpr char nl
The newline &#39;\n&#39; character (0x0a)
Definition: Ostream.H:50
const volScalarField Kd(fluid.Kd())
virtual tmp< volSymmTensorField > R() const
Return the Reynolds stress tensor.
#define K3
Definition: SHA1.C:145
const dimensionSet dimViscosity
dimensionedScalar sqrt(const dimensionedScalar &ds)
Ostream & endl(Ostream &os)
Add newline and flush stream.
Definition: Ostream.H:531
tmp< volScalarField > trho
tmp< DimensionedField< TypeR, GeoMesh > > New(const tmp< DimensionedField< TypeR, GeoMesh >> &tf1, const word &name, const dimensionSet &dimensions, const bool initCopy=false)
Global function forwards to reuseTmpDimensionedField::New.
tmp< GeometricField< Type, fvPatchField, volMesh > > Sp(const volScalarField &sp, const GeometricField< Type, fvPatchField, volMesh > &vf)
Definition: fvcSup.C:62
Generic dimensioned Type class.
const dimensionSet dimless
Dimensionless.
Eddy viscosity turbulence model base class.
Definition: eddyViscosity.H:51
Finite-volume options.
Definition: fvOptions.H:51
GeometricField< vector, fvPatchField, volMesh > volVectorField
Definition: volFieldsFwd.H:76
const dimensionSet dimDynamicViscosity
virtual bool read()
Re-read model coefficients if they have changed.
fv::options & fvOptions
bool read(const char *buf, int32_t &val)
Same as readInt32.
Definition: int32.H:127
#define forAll(list, i)
Loop across all elements in list.
Definition: stdFoam.H:421
Templated abstract base class for RAS turbulence models.
Definition: RASModel.H:77
tmp< GeometricField< Type, fvPatchField, volMesh > > ddt(const dimensioned< Type > dt, const fvMesh &mesh)
Definition: fvcDdt.C:40
GeometricField< scalar, fvPatchField, volMesh > volScalarField
Definition: volFieldsFwd.H:72
virtual tmp< fvVectorMatrix > divDevRhoReff(volVectorField &U) const
Return the source term for the momentum equation.
word timeName
Definition: getTimeIndex.H:3
fileName::Type type(const fileName &name, const bool followLink=true)
Return the file type: DIRECTORY or FILE, normally following symbolic links.
Definition: POSIX.C:799
static word groupName(StringType base, const word &group)
Create dot-delimited name.group string.
const dimensionedScalar e
Elementary charge.
Definition: createFields.H:11
dynamicFvMesh & mesh
virtual void correct()
Solve the kinetic theory equations and correct the viscosity.
word name(const expressions::valueTypeCode typeCode)
A word representation of a valueTypeCode. Empty for expressions::valueTypeCode::INVALID.
Definition: exprTraits.C:127
static const SymmTensor I
Definition: SymmTensor.H:74
static const Identity< scalar > I
Definition: Identity.H:100
virtual tmp< surfaceScalarField > pPrimef() const
Return the face-phase-pressure&#39;.
tmp< fvMatrix< Type > > ddt(const GeometricField< Type, fvPatchField, volMesh > &vf)
Definition: fvmDdt.C:41
constexpr scalar pi(M_PI)
A special matrix type and solver, designed for finite volume solutions of scalar equations. Face addressing is used to make all matrix assembly and solution loops vectorise.
Definition: fvPatchField.H:64
zeroField SuSp(const Foam::zero, const GeometricField< Type, fvPatchField, volMesh > &)
A no-op source.
dimensionedScalar tr(const dimensionedSphericalTensor &dt)
virtual void printCoeffs(const word &type)
Print model coefficients.
Definition: RASModel.C:27
label min(const labelHashSet &set, label minValue=labelMax)
Find the min value in labelHashSet, optionally limited by second argument.
Definition: hashSets.C:26
zeroField Sp(const Foam::zero, const GeometricField< Type, fvPatchField, volMesh > &)
A no-op source.
virtual tmp< volScalarField > omega() const
Return the specific dissipation rate.
static tmp< GeometricField< symmTensor, fvPatchField, volMesh > > New(const word &name, IOobjectOption::registerOption regOpt, const Mesh &mesh, const dimensionSet &dims, const word &patchFieldType=fvPatchField< symmTensor >::calculatedType())
Return tmp field (NO_READ, NO_WRITE) from name, mesh, dimensions and patch type. [Takes current timeN...
SolverPerformance< Type > solve(const dictionary &)
Solve returning the solution statistics.
tmp< fvMatrix< Type > > div(const surfaceScalarField &flux, const GeometricField< Type, fvPatchField, volMesh > &vf, const word &name)
Definition: fvmDiv.C:41
virtual tmp< volScalarField > k() const
Return the turbulence kinetic energy.
int debug
Static debugging option.
virtual tmp< volSymmTensorField > devRhoReff() const
Return the effective stress tensor.
void relax(const scalar alpha)
Relax matrix (for steady-state solution).
Definition: fvMatrix.C:1095
void T(FieldField< Field, Type > &f1, const FieldField< Field, Type > &f2)
RASModel< EddyDiffusivity< turbulenceModel > > RASModel
static tmp< GeometricField< Type, fvsPatchField, surfaceMesh > > interpolate(const GeometricField< Type, fvPatchField, volMesh > &tvf, const surfaceScalarField &faceFlux, Istream &schemeData)
Interpolate field onto faces using scheme given by Istream.
void clamp_max(const Type &upper)
Impose upper (ceiling) clamp on the field values (in-place)
virtual tmp< volScalarField > pPrime() const
Return the phase-pressure&#39;.
dimensionedSymmTensor dev2(const dimensionedSymmTensor &dt)
U
Definition: pEqn.H:72
dimensionedSymmTensor symm(const dimensionedSymmTensor &dt)
dimensioned< scalar > dimensionedScalar
Dimensioned scalar obtained from generic dimensioned type.
tmp< fvMatrix< Type > > laplacian(const GeometricField< Type, fvPatchField, volMesh > &vf, const word &name)
Definition: fvmLaplacian.C:41
messageStream Info
Information stream (stdout output on master, null elsewhere)
dimensionedScalar beta("beta", dimless/dimTemperature, laminarTransport)
const dimensionedScalar & D
A class for managing temporary objects.
Definition: HashPtrTable.H:50
GeometricField< scalar, fvsPatchField, surfaceMesh > surfaceScalarField
static options & New(const fvMesh &mesh)
Construct fvOptions and register to database if not present.
Definition: fvOptions.C:96
bool coupled
const dimensionedScalar alpha
Fine-structure constant: default SI units: [].
#define NotImplemented
Issue a FatalErrorIn for a function not currently implemented.
Definition: error.H:696
virtual tmp< volScalarField > epsilon() const
Return the turbulence kinetic energy dissipation rate.
Do not request registration (bool: false)
dimensioned< typename typeOfMag< Type >::type > magSqr(const dimensioned< Type > &dt)
SymmTensor< Cmpt > devTwoSymm(const SymmTensor< Cmpt > &st)
Return the deviatoric part of twice the symmetric part of a SymmTensor.
Definition: SymmTensorI.H:491
static constexpr const zero Zero
Global zero (0)
Definition: zero.H:127