TEqn.H
Go to the documentation of this file.
1 {
2  radiation->correct();
3  rhoCp = rho*fluid.Cp();
4 
6 
8  (
9  "kappaEff",
10  fluid.kappa() + fluid.Cp()*turbulence->mut()/fluid.Prt()
11  );
12 
14  (
15  fvm::ddt(rhoCp, T)
16  + fvm::div(rhoCpPhi, T, "div(phi,T)")
18  - fvm::laplacian(kappaEff, T, "laplacian(kappa,T)")
19  ==
20  fluid.heatTransfer(T)
21  + radiation->ST(T)
22  + fvOptions(rhoCp, T)
23  );
24 
25  TEqn.relax();
26 
27  fvOptions.constrain(TEqn);
28 
29  TEqn.solve();
30 
31  fvOptions.correct(T);
32 
33  fluid.correct();
34 
35  Info<< "min/max(T) = "
36  << min(T).value() << ", " << max(T).value() << endl;
37 }
twoPhaseSystem & fluid
fvMatrix< scalar > fvScalarMatrix
Definition: fvMatricesFwd.H:37
label max(const labelHashSet &set, label maxValue=labelMin)
Find the max value in labelHashSet, optionally limited by second argument.
Definition: hashSets.C:40
static tmp< GeometricField< Type, faePatchField, edgeMesh > > interpolate(const GeometricField< Type, faPatchField, areaMesh > &tvf, const edgeScalarField &faceFlux, Istream &schemeData)
Interpolate field onto faces using scheme given by Istream.
tmp< GeometricField< Type, faPatchField, areaMesh > > div(const GeometricField< Type, faePatchField, edgeMesh > &ssf)
Definition: facDiv.C:43
Ostream & endl(Ostream &os)
Add newline and flush stream.
Definition: Ostream.H:531
tmp< GeometricField< Type, faPatchField, areaMesh > > ddt(const dimensioned< Type > dt, const faMesh &mesh)
Definition: facDdt.C:40
kappaEff
Definition: TEqn.H:10
const surfaceScalarField rhoCpPhi(fvc::interpolate(fluid.Cp()) *rhoPhi)
fv::options & fvOptions
GeometricField< scalar, fvPatchField, volMesh > volScalarField
Definition: volFieldsFwd.H:81
tmp< GeometricField< Type, faPatchField, areaMesh > > laplacian(const GeometricField< Type, faPatchField, areaMesh > &vf, const word &name)
Definition: facLaplacian.C:40
label min(const labelHashSet &set, label minValue=labelMax)
Find the min value in labelHashSet, optionally limited by second argument.
Definition: hashSets.C:26
rhoCp
Definition: TEqn.H:3
Info<< "Reading field U\"<< endl;volVectorField U(IOobject("U", runTime.timeName(), mesh, IOobject::MUST_READ, IOobject::AUTO_WRITE), mesh);volScalarField rho(IOobject("rho", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::AUTO_WRITE), thermo.rho());volVectorField rhoU(IOobject("rhoU", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::NO_WRITE), rho *U);volScalarField rhoE(IOobject("rhoE", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::NO_WRITE), rho *(e+0.5 *magSqr(U)));surfaceScalarField pos(IOobject("pos", runTime.timeName(), mesh), mesh, dimensionedScalar("pos", dimless, 1.0));surfaceScalarField neg(IOobject("neg", runTime.timeName(), mesh), mesh, dimensionedScalar("neg", dimless, -1.0));surfaceScalarField phi("phi", fvc::flux(rhoU));Info<< "Creating turbulence model\"<< endl;autoPtr< compressible::turbulenceModel > turbulence(compressible::turbulenceModel::New(rho, U, phi, thermo))
Definition: createFields.H:94
const volScalarField & T
rhoPhi
Definition: rhoEqn.H:10
messageStream Info
Information stream (stdout output on master, null elsewhere)
fvScalarMatrix TEqn(fvm::ddt(T)+fvm::div(phi, T) - fvm::laplacian(alphaEff, T)==radiation->ST(rhoCpRef, T)+fvOptions(T))
GeometricField< scalar, fvsPatchField, surfaceMesh > surfaceScalarField
autoPtr< radiation::radiationModel > radiation(radiation::radiationModel::New(T))
zeroField Sp
Definition: alphaSuSp.H:2