UEqn.H
Go to the documentation of this file.
1 MRF.correctBoundaryVelocity(U);
2 
4 (
5  fvm::ddt(alphacRho, U)
6  + MRF.DDt(alphacRho, U)
8  + fvm::div(rhoPhi, U)
9  + turbulence->divDevRhoReff(U)
10  ==
11  fvOptions(rho, U)
12  + cloudSU
13 );
14 
15 UEqn.relax();
16 fvOptions.constrain(UEqn);
17 
18 volScalarField rAUc(1.0/UEqn.A());
20 
21 
23 (
24  (fvc::interpolate(rAUc*cloudVolSUSu) & mesh.Sf())
25 );
26 
27 
28 if (pimple.momentumPredictor())
29 {
30  solve
31  (
32  UEqn
33  ==
35  (
37  +
38  (
40  (
41  mixture.sigmaK()
45  ) * mesh.magSf()
46  )
47  );
48 
49  fvOptions.correct(U);
50 }
solve(UEqn==-fvc::grad(p))
static tmp< GeometricField< Type, faePatchField, edgeMesh > > interpolate(const GeometricField< Type, faPatchField, areaMesh > &tvf, const edgeScalarField &faceFlux, Istream &schemeData)
Interpolate field onto faces using scheme given by Istream.
tmp< GeometricField< Type, faPatchField, areaMesh > > div(const GeometricField< Type, faePatchField, edgeMesh > &ssf)
Definition: facDiv.C:43
Info<< "Creating temperaturePhaseChangeTwoPhaseMixture\"<< endl;autoPtr< temperaturePhaseChangeTwoPhaseMixture > mixture
Definition: createFields.H:39
tmp< GeometricField< Type, faPatchField, areaMesh > > ddt(const dimensioned< Type > dt, const faMesh &mesh)
Definition: facDdt.C:40
fv::options & fvOptions
const surfaceScalarField & ghf
GeometricField< scalar, fvPatchField, volMesh > volScalarField
Definition: volFieldsFwd.H:84
surfaceScalarField phicForces((fvc::interpolate(rAUc *cloudVolSUSu) &mesh.Sf()))
dynamicFvMesh & mesh
IOMRFZoneList & MRF
surfaceScalarField rAUcf(fvc::interpolate(rAUc))
pimpleControl & pimple
Info<< "Reading field U\"<< endl;volVectorField U(IOobject("U", runTime.timeName(), mesh, IOobject::MUST_READ, IOobject::AUTO_WRITE), mesh);volScalarField rho(IOobject("rho", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::AUTO_WRITE), thermo.rho());volVectorField rhoU(IOobject("rhoU", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::NO_WRITE), rho *U);volScalarField rhoE(IOobject("rhoE", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::NO_WRITE), rho *(e+0.5 *magSqr(U)));surfaceScalarField pos(IOobject("pos", runTime.timeName(), mesh), mesh, dimensionedScalar("pos", dimless, 1.0));surfaceScalarField neg(IOobject("neg", runTime.timeName(), mesh), mesh, dimensionedScalar("neg", dimless, -1.0));surfaceScalarField phi("phi", fvc::flux(rhoU));Info<< "Creating turbulence model\"<< endl;autoPtr< compressible::turbulenceModel > turbulence(compressible::turbulenceModel::New(rho, U, phi, thermo))
Definition: createFields.H:94
volScalarField rAUc(1.0/UEqn.A())
tmp< GeometricField< typename outerProduct< vector, Type >::type, fvPatchField, volMesh >> reconstruct(const GeometricField< Type, fvsPatchField, surfaceMesh > &ssf)
U
Definition: pEqn.H:72
fvVectorMatrix & UEqn
Definition: UEqn.H:13
rhoPhi
Definition: rhoEqn.H:10
fvMatrix< vector > fvVectorMatrix
Definition: fvMatricesFwd.H:40
GeometricField< scalar, fvsPatchField, surfaceMesh > surfaceScalarField
volScalarField & p_rgh
tmp< GeometricField< Type, fvsPatchField, surfaceMesh > > snGrad(const GeometricField< Type, fvPatchField, volMesh > &vf, const word &name)
Definition: fvcSnGrad.C:40
zeroField Sp
Definition: alphaSuSp.H:2
const volScalarField & alpha1